Respuesta :
The answers are ONM, NOM, and alternate interior angles.
Based on the SSS postulate, the two triangles △MLO and △ONM are congruent since three sides of △MLO are respectively equal to the three sides of △ONM.
Based on CPCTC, all of the corresponding angles of △MLO and △ONM are congruent as well since the two triangles are congruent, that is,
∠LMO≅∠NOM and ∠NMO≅∠LOM.
Since the pair ∠LMO and ∠NOM as well as ∠NMO and ∠LOM are angles on the inner side of two lines but on opposite sides of the transversal MO, these pairs of angles are also alternate interior angles.
Based on the SSS postulate, the two triangles △MLO and △ONM are congruent since three sides of △MLO are respectively equal to the three sides of △ONM.
Based on CPCTC, all of the corresponding angles of △MLO and △ONM are congruent as well since the two triangles are congruent, that is,
∠LMO≅∠NOM and ∠NMO≅∠LOM.
Since the pair ∠LMO and ∠NOM as well as ∠NMO and ∠LOM are angles on the inner side of two lines but on opposite sides of the transversal MO, these pairs of angles are also alternate interior angles.