Respuesta :
If [tex]A[/tex] and [tex]B[/tex] are independent, then [tex]P(A\cap B)=P(A)\cdot P(B)[/tex]. Then the conditional probability is
[tex]P(A\mid B)=\dfrac{P(A\cap B)}{P(B)}=\dfrac{P(A)\cdot P(B)}{P(B)}=P(A)[/tex]
so the claim is true.
[tex]P(A\mid B)=\dfrac{P(A\cap B)}{P(B)}=\dfrac{P(A)\cdot P(B)}{P(B)}=P(A)[/tex]
so the claim is true.