Respuesta :

y=14x^2-x-1

If the directix line is given, the vertex is the midpoint between the focus and the directix.

in this case the answer is (1/28, -1)

Answer:

Focus = [tex](\frac{1}{28}, -1)[/tex]

Step-by-step explanation:

The standard form is

[tex](x -h)^2 = 4p(y-k)[/tex],  ....[1]  where the focus is (h, k + p).

Given the equation of parabola:

[tex]y = 14x^2-x-1[/tex]

Using the square completing method.

Divide all the term by 14 on right side we have;

[tex]y = 14(x^2-\frac{1}{14}x-\frac{1}{14})[/tex]

Now, complete the square on the right side.

[tex]y =14(x^2-\frac{1}{14}x-\frac{1}{14}+(\frac{1}{28})^2-(\frac{1}{28})^2)[/tex]

then;

[tex]y = 14((x-\frac{1}{28})^2-\frac{1}{784}-\frac{1}{14})[/tex]

⇒[tex]y = 14 \cdot ((x-\frac{1}{28})^2-\frac{57}{784})[/tex]

⇒[tex]y = 14(x-\frac{1}{28})^2-\frac{57}{56}[/tex]

then;

[tex]y+\frac{57}{56} = 14 \cdot (x-\frac{1}{28})^2[/tex]

⇒[tex](x-\frac{1}{28})^2 = \frac{1}{14}(y+\frac{57}{56})[/tex]

On comparing with [1] we have;

[tex]h = \frac{1}{28}[/tex] , [tex]k = -\frac{57}{56}[/tex] and [tex]4p = \frac{1}{14}[/tex]

⇒[tex]p = \frac{1}{56}[/tex]

[tex]k+p = -\frac{57}{56}+\frac{1}{56} = \frac{-56}{56} = -1[/tex]

Focus = [tex](\frac{1}{28}, -1)[/tex]

Therefore, the focus of the parabola is, [tex](\frac{1}{28}, -1)[/tex]