Respuesta :

Louve1
T(n)=19-7n
You can use this formula to check if I’m right or wrong by plugging the term # for n...it will show you the # of the term
Ver imagen Louve1

Answer: [tex]f(n)=19-7n[/tex]  

Step-by-step explanation:

The explicit formula for an arithmetic sequence is given by :-

[tex]f(n)=a+(n-1)d[/tex]                  (1)

, where a = first term

d= common difference

n= number of term

The given arithmetic sequence =  12, 5, -2, -9..

First term : a = 12

Common difference : d= 5-12=-7   [Difference between any two consecutive terms.]

Put a = 12 and d= -7 in (1) , we get

[tex]f(n)=12+(n-1)(-7)[/tex]    

Hence, the explicit formula for the given arithmetic sequence : [tex]f(n)=12+(n-1)(-7)[/tex]    

We we solve it further , we get

[tex]f(n)=12-7n+7[/tex]    

[tex]f(n)=19-7n[/tex]    

Required explicit formula :  [tex]f(n)=19-7n[/tex]