For this case, what we must do is find the distance between each ordered pair.
For this, we use the formula of distance between points.
We have then:
[tex]d = \sqrt{(x2-x1)^2+(y2-y1)^2} [/tex]
For (0, 0) and (0, 7):
[tex]d1=\sqrt{(0-0)^2+(7-0)^2}[/tex]
[tex]d1=\sqrt{(0)^2+(7)^2}[/tex]
[tex]d1=\sqrt{0+49}[/tex]
[tex]d1=\sqrt{49}[/tex]
[tex]d1=7[/tex]
For (0, 7) and (5, 7):
[tex]d2=\sqrt{(5-0)^2+(7-7)^2}[/tex]
[tex]d2=\sqrt{(5)^2+(0)^2}[/tex]
[tex]d2=\sqrt{25+0}[/tex]
[tex]d2=\sqrt{25}[/tex]
[tex]d2=5[/tex]
For (5, 7) and (5, 0):
[tex]d3=\sqrt{(5-5)^2+(7-0)^2}[/tex]
[tex]d3=\sqrt{(0)^2+(7)^2}[/tex]
[tex]d3=\sqrt{0+49}[/tex]
[tex]d3=\sqrt{49}[/tex]
[tex]d3=7[/tex]
before returning home the total distance is:
[tex]d1 + d2 + d3 = 7 + 5 + 7
d1 + d2 + d3 = 19[/tex]
Answer:
before returning home Tommy walks about 19 blocks