Respuesta :
First, some rewriting:
[tex]\sqrt{64}=8[/tex]
[tex]8.1414\ldots=\dfrac{806}{99}[/tex]
Why? If [tex]x=8.1414\ldots[/tex], then [tex]100x=814.1414\ldots[/tex], which means [tex]100x-x=99x=814-8=806[/tex], and so [tex]x=\dfrac{806}{99}[/tex].
[tex]\dfrac{15}2=7.5[/tex]
So from the four given numbers, it's obvious that [tex]\dfrac{15}2[/tex] is the smallest, followed by [tex]\sqrt{64}[/tex]. So you just need to determine which of [tex]8.1414\ldots[/tex] and [tex]8+\dfrac17[/tex] is smallest.
Note that
[tex]8+\dfrac17=\dfrac{57}7[/tex]
To easily compare this number to [tex]8.1414\ldots=\dfrac{806}{99}[/tex], we need to find a common denominator. The greatest common divisor of 7 and 99 is 1 (they are relatively prime), so [tex]\mathrm{lcm}(7,99)=7\cdot99=693[/tex]. So we write
[tex]\dfrac{57}7\cdot\dfrac{99}{99}=\dfrac{5643}{693}[/tex]
[tex]\dfrac{806}{99}\cdot\dfrac77=\dfrac{5642}{693}[/tex]
So we find that [tex]\dfrac{806}{99}<\dfrac{57}7[/tex], that is, [tex]8.1414\ldots<8+\dfrac17[/tex].
So the proper ordering from least to greatest is
[tex]\dfrac{15}2,\sqrt{64},8.1414\ldots,8+\dfrac17[/tex]
[tex]\sqrt{64}=8[/tex]
[tex]8.1414\ldots=\dfrac{806}{99}[/tex]
Why? If [tex]x=8.1414\ldots[/tex], then [tex]100x=814.1414\ldots[/tex], which means [tex]100x-x=99x=814-8=806[/tex], and so [tex]x=\dfrac{806}{99}[/tex].
[tex]\dfrac{15}2=7.5[/tex]
So from the four given numbers, it's obvious that [tex]\dfrac{15}2[/tex] is the smallest, followed by [tex]\sqrt{64}[/tex]. So you just need to determine which of [tex]8.1414\ldots[/tex] and [tex]8+\dfrac17[/tex] is smallest.
Note that
[tex]8+\dfrac17=\dfrac{57}7[/tex]
To easily compare this number to [tex]8.1414\ldots=\dfrac{806}{99}[/tex], we need to find a common denominator. The greatest common divisor of 7 and 99 is 1 (they are relatively prime), so [tex]\mathrm{lcm}(7,99)=7\cdot99=693[/tex]. So we write
[tex]\dfrac{57}7\cdot\dfrac{99}{99}=\dfrac{5643}{693}[/tex]
[tex]\dfrac{806}{99}\cdot\dfrac77=\dfrac{5642}{693}[/tex]
So we find that [tex]\dfrac{806}{99}<\dfrac{57}7[/tex], that is, [tex]8.1414\ldots<8+\dfrac17[/tex].
So the proper ordering from least to greatest is
[tex]\dfrac{15}2,\sqrt{64},8.1414\ldots,8+\dfrac17[/tex]