Answer:
[tex]\binom{6}{2} = a_{0}=15[/tex]
Step-by-step explanation:
[tex]\binom{6}{2} = a_{0}[/tex]
[tex]\binom{n}{r} =\frac{n!}{r!\times(n-r)!}[/tex]
It is representing a combination form where, n is number of items we have and r is the number of items we choose from n
Here, n = 6 , r = 2
[tex]\binom{6}{2} =\frac{6!}{2!\times(6-2)!}[/tex]
=[tex]=\frac{6!}{2!\times(4)!}[/tex]
[tex]n!=n\times(n-1)\times(n-2)\times(n-3).....\times3\times2\times1[/tex]
[tex]=\frac{6\times5\times4!}{2\times(4)!}[/tex]
[tex]=\frac{6\times5}{2}[/tex]
[tex]={3\times5}[/tex]
[tex]={15}=a_0[/tex]
Thus, [tex]\binom{6}{2} = a_{0}=15[/tex]