Respuesta :

Answer:

[tex]\binom{6}{2} = a_{0}=15[/tex]

Step-by-step explanation:

[tex]\binom{6}{2} = a_{0}[/tex]

[tex]\binom{n}{r} =\frac{n!}{r!\times(n-r)!}[/tex]

It is representing a combination form where, n is number of items we have and r is the number of items we choose from n

Here, n = 6 , r = 2

[tex]\binom{6}{2} =\frac{6!}{2!\times(6-2)!}[/tex]

=[tex]=\frac{6!}{2!\times(4)!}[/tex]

[tex]n!=n\times(n-1)\times(n-2)\times(n-3).....\times3\times2\times1[/tex]

[tex]=\frac{6\times5\times4!}{2\times(4)!}[/tex]

[tex]=\frac{6\times5}{2}[/tex]

[tex]={3\times5}[/tex]

[tex]={15}=a_0[/tex]

Thus, [tex]\binom{6}{2} = a_{0}=15[/tex]