Which could be the first step in simplifying this expression? Check all that apply. (x^3 x^-6)^2

(x^-18)^2
(x^-3)^2
(x^-2)^2
x^6 x^-12
x^5 x^-4

Respuesta :

x^(3 + (-6) )= (x^-3)^2

Answer:

Option B and D are correct

[tex](x^{-3})^2[/tex] or

[tex]x^6 \cdot x^{-12}[/tex]

Step-by-step explanation:

Using exponent rule:

[tex](ab)^m = a^m \cdot b^m[/tex]

[tex](a^m)^n = a^{mn}[/tex]

[tex]a^m \cdot a^n = a^{m+n}[/tex]

Given the expression:

[tex](x^3 \cdot x^{-6})^2[/tex]         ....[1]

Apply the exponent rule:

[tex](x^{3-6})^2[/tex]

[tex](x^{-3})^2[/tex]

We can write the given expression as:

Apply the exponent rule in [1]:

[tex](x^3)^2 \cdot (x^{-6})^2[/tex]

⇒[tex]x^6 \cdot x^{-12}[/tex]

Therefore, the  first step in simplifying this expression are:

[tex](x^{-3})^2[/tex] or [tex]x^6 \cdot x^{-12}[/tex]