Answer:
The distance C'A' is [tex]2\sqrt{2}[/tex] units.
Step-by-step explanation:
From the given graph it is clear that the coordinates of C' and A' are C'(0,3) and A'(2,1).
Distance formula:
[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Using distance formula, the distance between C' and A' is
[tex]C'A'=\sqrt{(2-0)^2+(1-3)^2}[/tex]
On simplification we get
[tex]C'A'=\sqrt{(2)^2+(-2)^2}[/tex]
[tex]C'A'=\sqrt{4+4}[/tex]
[tex]C'A'=\sqrt{8}[/tex]
[tex]C'A'=2\sqrt{2}[/tex]
Therefore the distance C'A' is [tex]2\sqrt{2}[/tex] units.