Respuesta :

Question 3 ⇒⇒ one part

The upper shaded figure represents rhombus 
So, the angles 60° and (5x + 15)° are supplementary 
∴ 60° + (5x + 15)° = 180°
Solve for x
∴ 5x + 75 = 180
∴ 5x = 180 - 75 = 105
∴ x = 105/5 = 21

So, the value of x = 21
===================================================
Question 4 ⇒⇒ two parts

we will use the following sequence to find the area of each triangle
1. calculating the length of each side using the distance between two points (x₁,y₁),(x₂,y₂) = d

[tex]d = \sqrt{ (x2-x1)^{2} + (y2-y1)^{2} } [/tex]

2. calculating the area using Heron's Formula

[tex]area = \sqrt{s(s-a)(s-b)(s-c)} [/tex]

where a, b and c are the lengths of sides of the triangle

and   s is the half of the triangles perimeter = (a+b+c)/2


Part (1): The area of RST

R(-5,-5) ,  S(-3,-1)  , T(-1,-2)

[tex]RS = \sqrt{ (-3+5)^{2} + (-1+5)^{2} } [/tex] = √20

[tex]ST = \sqrt{ (-1+3)^{2} + (-2+1)^{2} } [/tex] = √5

[tex]RT = \sqrt{ (-1+5)^{2} + (-2+5)^{2} } [/tex] = 5

s = (√20 + √5 + 5)/2 ≈ 5.85

∴ Area = [tex] \sqrt{5.85(5.85-√20)(5.85-√5)(5.85-5)} [/tex] = 5

∴ Area of ΔRST = 5 


Part (2): The area of MNL

M(1,0) , N(3,2) , L(4,-2)
[tex]MN = \sqrt{ (3-1)^{2} + (2-0)^{2} } [/tex] = 2√2

[tex]NL = \sqrt{ (4-3)^{2} + (-2-2)^{2} } [/tex] = √17

[tex]ML= \sqrt{ (4-1)^{2} + (-2-0)^{2} } [/tex] = √13
s = (2√2 + √17+ √13)/2 ≈ 5.28
∴ Area = [tex] \sqrt{5.28(5.28-2√2)(5.28-√17)(5.28-√13)} [/tex] = 5

∴ Area of ΔMNL = 5

====================================================

Question 8 ⇒⇒ four parts

Part (1)⇒⇒⇒ A. hexagonal prism

Part (2)⇒⇒⇒ B. rectangular pyramid

Part (3)⇒⇒⇒ C. triangular prism

Part (4)⇒⇒⇒ D. triangular pyramid


The complete answer is as shown in the attached figure

Ver imagen Matheng