Respuesta :
Answer is: The percent of KCl in the mixture is closest to a) 40%.
If we use 100 grams of mixture:
ω(K) = 44.20% ÷ 100% = 0.442.
m(K) = 0.442 · 100 g = 44.2 g.
n(K) = 44.2 g ÷ 39.1 g/mol.
n(K) = 1.13 mol.
n(KCl) + n(KNO₃) = n(K)
m(KCl) = x.
m(KNO₃) = y.
Two equtions:
1) x + y = 100 g.
2) m(KCl)/M(KCl) + m(KNO₃)/M(KNO₃) = 1.13 mol.
x/74.55 g/mol + y/101.1 g/mol = 1.13 mol.
From first equation find x = 100 - y and put in second equation:
(100 - y)/74.55 + y/101.1 = 1.13 /×101.1.
135.61 - 1.356y + y = 114.24.
0.356y = 22.37 g.
y = 62.83 g.
x = m(KCl) = 100 g - 62.83 g = 37.17 g.
If we use 100 grams of mixture:
ω(K) = 44.20% ÷ 100% = 0.442.
m(K) = 0.442 · 100 g = 44.2 g.
n(K) = 44.2 g ÷ 39.1 g/mol.
n(K) = 1.13 mol.
n(KCl) + n(KNO₃) = n(K)
m(KCl) = x.
m(KNO₃) = y.
Two equtions:
1) x + y = 100 g.
2) m(KCl)/M(KCl) + m(KNO₃)/M(KNO₃) = 1.13 mol.
x/74.55 g/mol + y/101.1 g/mol = 1.13 mol.
From first equation find x = 100 - y and put in second equation:
(100 - y)/74.55 + y/101.1 = 1.13 /×101.1.
135.61 - 1.356y + y = 114.24.
0.356y = 22.37 g.
y = 62.83 g.
x = m(KCl) = 100 g - 62.83 g = 37.17 g.
Answer:
The correct answer is option (a).
Explanation:
Suppose we have total mass of the mixture be 100 g
let the mass of KCl be x
let the mass of [tex]KNO_3[/tex] be y
x + y = 100...(1)
Moles of KCl = [tex]\frac{x}{75.5 g/mol}[/tex]
Moles of K in KCl will be = [tex]\frac{x}{75.5 g/mol}[/tex] (1 mol is present in 1 mole of molecule)
Moles of [tex]KNO_3=\frac{y}{102 g/mol}[/tex]
Moles of K in [tex]KNO_3[/tex] will be = [tex]\frac{y}{102 g/mol}[/tex] (1 mol is present in 1 mole of molecule)
Percentage of potassium in the mixture = 44.20 %
In 100 g, the mass of potassium = 44.20 g
Moles of potassium =[tex]\frac{44.20 g}{40 g/mol}=1.105 mol[/tex]
So,
[tex]\frac{x}{75.5 g/mol}+\frac{y}{102 g/mol}=1.105 mol[/tex]..(2)
Solving equation (1) and (2):
we get ,y = 63.78 g, x=36.22 g
Percentage of KCl:
[tex]\frac{36.22 g}{100g}\times 100=36.22 g\%[/tex]
The percent of KCl in the mixture is closest to 40%.Hence ,option (a) is correct.