Respuesta :
Use:
[tex]\dfrac{1}{a}=a^{-1}\\\\\dfrac{1}{a^n}=a^{-n}[/tex]
[tex]\dfrac{3a^2b^3c^5}{8x^4y^3z}=3a^2b^3c^5\cdot8^{-1}x^{-4}y^{-3}z^{-1}[/tex]
Answer: 3"8^-1a^2b^3c^5x^-4y^-3z^-1
[tex]\dfrac{1}{a}=a^{-1}\\\\\dfrac{1}{a^n}=a^{-n}[/tex]
[tex]\dfrac{3a^2b^3c^5}{8x^4y^3z}=3a^2b^3c^5\cdot8^{-1}x^{-4}y^{-3}z^{-1}[/tex]
Answer: 3"8^-1a^2b^3c^5x^-4y^-3z^-1
Answer : The expression will be,
[tex]3\times a^2\times b^3\times c^5\times 8^{-1}\times x^{-4}\times y^{-3}\times z^{-1}[/tex]
Step-by-step explanation :
As we are given that the expression:
[tex](3a^2b^3c^5)/(8x^4y^3z)[/tex]
Using exponent law :
[tex]\frac{1}{x^a}=x^{-a}[/tex]
If we move denominator to numerator write minus sign with the exponent.
So, the expression will be:
[tex](3\times a^2\times b^3\times c^5)\times (8^{-1}\times x^{-4}\times y^{-3}\times z^{-1})[/tex]
or,
[tex]3\times a^2\times b^3\times c^5\times 8^{-1}\times x^{-4}\times y^{-3}\times z^{-1}[/tex]