Rewrite the expression (3a^2b^3c^5)/(8x^4y^3z)so that it has no denominator. (note: do not use a fraction line in your answer. also, use ' ' for multiplication between numbers. )

Respuesta :

gmany
Use:

[tex]\dfrac{1}{a}=a^{-1}\\\\\dfrac{1}{a^n}=a^{-n}[/tex]

[tex]\dfrac{3a^2b^3c^5}{8x^4y^3z}=3a^2b^3c^5\cdot8^{-1}x^{-4}y^{-3}z^{-1}[/tex]

Answer: 3"8^-1a^2b^3c^5x^-4y^-3z^-1

Answer : The expression will be,

[tex]3\times a^2\times b^3\times c^5\times 8^{-1}\times x^{-4}\times y^{-3}\times z^{-1}[/tex]

Step-by-step explanation :

As we are given that the expression:

[tex](3a^2b^3c^5)/(8x^4y^3z)[/tex]

Using exponent law :

[tex]\frac{1}{x^a}=x^{-a}[/tex]

If we move denominator to numerator write minus sign with the exponent.

So, the expression will be:

[tex](3\times a^2\times b^3\times c^5)\times (8^{-1}\times x^{-4}\times y^{-3}\times z^{-1})[/tex]

or,

[tex]3\times a^2\times b^3\times c^5\times 8^{-1}\times x^{-4}\times y^{-3}\times z^{-1}[/tex]