Respuesta :
Let y = f(x)
y = ln(3x)
Exchange place with x and y.
x = ln(3y)
Solve for y.
y = (e^x)/3
Replace y with the inverse notation.
f^(-1) x = (e^x)/3
Done.
Answer:
[tex]f^{-1}(x)= \frac{e^x}{3}[/tex]
Step-by-step explanation:
f(x)= ln(3x)
First we replace f(x) with y
y=ln(3x)
Now , interchange the variables x and y
x= ln(3y)
Solve the equation for y
We know ln has base 'e'
e^x = 3y
divide by 3 on both sides
[tex]y= \frac{e^x}{3}[/tex]
[tex]f^{-1}(x)= \frac{e^x}{3}[/tex]