Respuesta :

f'(x)=(x/4)^2 or (x^2)/16

Answer:

Horizontal stretch:

If a parent function y = f(x) ,

Replace x with [tex]\frac{x}{n}[/tex] result in horizontal stretch by a factor of n.

then a new function become [tex]g(x) = f(\frac{x}{n})[/tex]

As per the statement:

Horizontally stretch the quadratic parent function [tex]f(x) = x^2[/tex] by a factor of 4 .

By definition of Horizontal stretch:

A equation of new function become:

[tex]g(x) = f(\frac{x}{4})=(\frac{x}{4})^2=\frac{1}{16}x^2[/tex]

therefore, a equation of the new function is, [tex]g(x) = \frac{1}{16}x^2[/tex]