Respuesta :
[tex] B.)\ \ \dfrac{4}{x-3}[/tex]
[tex]\dfrac{x+2}{x-3}\cdot\dfrac{4}{x+2}\\\\=\dfrac{(x+2)(4)}{(x-3)(x+2)}\qquad\text{cancel}\ (x+2)\\\\=\dfrac{4}{x-3}[/tex]
For this case we have the following expression:
[tex]\frac {4} {x-3}[/tex]
We must multiply the expression given by the same factor in the numerator and the denominator.
We have then:
[tex]\frac {4} {x-3} \frac {x + 2} {x + 2}[/tex]
Then, rewriting the given expression we have:
[tex]\frac {x + 2} {x-3} \frac {4} {x + 2}[/tex]
Answer:
The rational expression that is equivalent to the given expression is:
[tex]\frac {x + 2} {x-3} \frac {4} {x + 2}[/tex]
Option B