Respuesta :

When the events are independent
  P(A∪B) = P(A) + P(B) - P(A∩B) . . . . where P(A∩B) = P(A)·P(B)

Substituting the given numbers, you have
  P(A∪B) = 0.3 + 0.9 - 0.3·0.9
  P(A∪B) = 0.93

Answer:

[tex]P(A\cup B)=0.93[/tex]

Step-by-step explanation:

We have been given that A and B are independent events. We are asked to find [tex]P(A\cup B)[/tex].  

We know that if two events are independent, then [tex]P(A\cup B)=P(A)+P(B)-P(A\cap B)[/tex].      

[tex]P(A\cap B)=P(A)*P(B)[/tex]

Substituting our given values in above formula we will get,

[tex]P(A\cup B)=0.3+0.9-(0.3*0.9)[/tex]    

[tex]P(A\cup B)=1.2-0.27[/tex]  

[tex]P(A\cup B)=0.93[/tex]  

Therefore, the probability of [tex]P(A\cup B)[/tex] is 0.93.