which of the following shows the true solution to the logarithmic equation solved below? HURRY!

Answer:
The correct option is 2.
Step-by-step explanation:
The given logarithmic equation is
[tex]\log_2(x)+\log_2(x+7)=3[/tex]
[tex]\log_2[x(x+7)]=3[/tex] [tex][\because \log a+\log b=\log ab][/tex]
[tex]x(x+7)=2^3[/tex] [tex][\because \log_ax=b\Rightarrow x=a^b][/tex]
[tex]x^2+7x-8=0[/tex]
[tex](x+8)(x-1)=0[/tex]
[tex]x=-8,1[/tex]
At x=1,
[tex]\log_2(1)+\log_2(1+7)=3[/tex]
[tex]0+3=3[/tex]
[tex]3=3[/tex]
LHS=RHS, therefore x=1 is a solution of given equation.
At x=-8,
[tex]\log_2(-8)+\log_2(-8+7)=3[/tex]
[tex]\log_2(-8)+\log_2(-1)=3[/tex]
Logarithmic functions are defined only for positive values. Therefore x=-8 is not a solution of given equation. It is also known as extraneous solutions.
Hence option 2 is correct.