Which points are solutions to the linear inequality y < 0.5x + 2? Check all that apply. (–3, –2) (–2, 1) (–1, –2) (–1, 2) (1, –2) (1, 2)

Respuesta :

(-3,-2) (-1,-2) (1,-2) (1,2)

Answer:

A) [tex](-3,-2)[/tex]

C)  [tex](-1,-2)[/tex]

E)  [tex](1,-2)[/tex]

F) [tex](1,2)[/tex]

Step-by-step explanation:

we have

[tex]y<0.5x+2[/tex]

we know that

If a ordered pair is a solution of the inequality

then

the ordered pair must be satisfy the inequality

Verify

Point A) [tex](-3,-2)[/tex]

Substitute the value of x and value of y in the inequality an compare

[tex]-2<0.5(-3)+2[/tex]

[tex]-2<0.5[/tex] -------> is true

The ordered pair [tex](-3,-2)[/tex] is a solution of the inequality

Point B) [tex](-2,1)[/tex]

Substitute the value of x and value of y in the inequality an compare

[tex]1<0.5(-2)+2[/tex]

[tex]1<1[/tex] -------> is not true

The ordered pair [tex](-2,1)[/tex] is not a solution of the inequality

Point C) [tex](-1,-2)[/tex]

Substitute the value of x and value of y in the inequality an compare

[tex]-2<0.5(-1)+2[/tex]

[tex]-2<1.5[/tex] -------> is true

The ordered pair  [tex](-1,-2)[/tex]  is a solution of the inequality

Point D) [tex](-1,2)[/tex]

Substitute the value of x and value of y in the inequality an compare

[tex]2<0.5(-1)+2[/tex]

[tex]2<1.5[/tex] -------> is not true

The ordered pair [tex](-1,2)[/tex] is not a solution of the inequality

Point E) [tex](1,-2)[/tex]

Substitute the value of x and value of y in the inequality an compare

[tex]-2<0.5(1)+2[/tex]

[tex]-2<2.5[/tex] -------> is true

The ordered pair  [tex](1,-2)[/tex] is  a solution of the inequality

Point F) [tex](1,2)[/tex]

Substitute the value of x and value of y in the inequality an compare

[tex]2<0.5(1)+2[/tex]

[tex]2<2.5[/tex] -------> is true

The ordered pair  [tex](1,2)[/tex] is  a solution of the inequality