What are the solutions of the equation (x + 2)2 + 12(x + 2) – 14 = 0? Use u substitution and the quadratic formula to solve.
a. x= -8+5 square root 2b) x=-6+5 square root 2c) x= -4+5 square root 2d) x= -2+5 square root 2?

Respuesta :

Let u = x+2.  That makes our equation, in terms of u:  [tex]u^2+12u-14=0[/tex].  Fitting this into the quadratic formula looks like this:  [tex]u= \frac{-12+/- \sqrt{12^2-4(1)(-14)} }{2} [/tex].  Simplifying a bit gives us  [tex]u= \frac{-12+/- \sqrt{200} }{2} [/tex].  Simplifying that in terms of the radical gives us  [tex]u= \frac{-12+/-10 \sqrt{2} }{2} [/tex].  Reducing that numerator by the 2 in the denominator gives us  [tex]u=-6+5 \sqrt{2},-6-5 \sqrt{2} [/tex].  If u = x + 2, then we make that substitution now to solve for x:  [tex]x+2=-6+5 \sqrt{2} [/tex]  and  [tex]x=-10+5 \sqrt{2} [/tex];  [tex]x+2=-6-5 \sqrt{2} [/tex]  and  [tex]x=-10-5 \sqrt{2} [/tex]

Answer:

[tex]\text{The solutions are}x=-8+5\sqrt2,-8-5\sqrt2[/tex]

Step-by-step explanation:

Given the equation

[tex](x+2)^2+12(x+2)-14=0[/tex]

we have to find the solution of above equation by using quadratic formula.

[tex](x+2)^2+12(x+2)-14=0[/tex]

Substituting x+2=u, we get

Equation:[tex]u^2+12u-14=0[/tex]

[tex]\text{Comparing above with standard equation }ax^2+bx+c=0\text{, we get}[/tex]

a=1, b=12, c=-14

By quadratic formula

[tex]a=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]a=\frac{-12\pm \sqrt{(12)^2-4(1)(-14)}}{2(1)}[/tex]

[tex]a=\frac{-12\pm \sqrt{200}}{2}[/tex]

[tex]a=\frac{-12\pm 10\sqrt{2}}{2}[/tex]

[tex]a=-6+5\sqrt{2},-6-5\sqrt{2}[/tex]

[tex]\text{The solutions for u are }-6+5\sqrt{2},-6-5\sqrt{2}[/tex]

⇒ [tex]x+2=-6+5\sqrt{2}[/tex] and [tex]x+2=-6-5\sqrt2[/tex]

[tex]x=-8+5\sqrt2,-8-5\sqrt2[/tex]

Option A is correct