Respuesta :

The Pyth. Thm. applies here:


(√x + 1)^2 + (2√x)^2 = (2√x + 1 )^2


Expanding the squares:


x + 2sqrt(x) + 1 + 4x = 4x + 4sqrt(x) + 1


Let's subtract x + 2sqrt(x) + 1 + 4x from both sides:


4x + 4sqrt(x) + 1

-(x + 2sqrt(x) + 1 + 4x)

-------------------------------

3x + 2sqrt(x) - 4x = 0


Then 2sqrt(x) = x


Squaring both sides, 4x = x^2, or x^2 - 4x = 0. Then (x-4)x = 0, and the two possible solutions are 0 and 4.


Check these results by substitution. Does the Pyth. Thm. hold true for x=4?