Respuesta :

[tex]\bf ~~~~~~~~~~~~\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} \qquad \qquad \cfrac{1}{a^n}\implies a^{-n} \qquad \qquad a^n\implies \cfrac{1}{a^{-n}} \\\\ -------------------------------[/tex]

[tex]\bf \cfrac{6x^2y^4-12x^4y^2}{2x^2}\implies \stackrel{\textit{distributing the denominator}}{\cfrac{6x^2y^4}{2x^2}-\cfrac{12x^4y^2}{2x^2}} \\\\\\ \cfrac{6}{2}\cdot \cfrac{x^2x^{-2}y^4}{1}-\cfrac{12}{2}\cdot \cfrac{x^4x^{-2}y^2}{1}\implies 3\cdot x^{2-2}y^4~~-~~6\cdot x^{4-2}y^2 \\\\\\ 3y^4-6x^2y^2\implies 3y^2(y^2-2x^2)[/tex]