If f(x) = |x| + 9 and g(x) = –6, which describes the value of (f + g)(x)?
(f + g)(x) 3 for all values of x
(f + g)(x) 3 for all values of x
(f + g)(x) 6 for all values of x
(f + g)(x) 6 for all values of x

Respuesta :

The answer is just adding the two functions together. |x| + 9 - 6, which equals

|x|+3

Since |x| can only be greater than or equal to 0, it is answer one, or greater than or equal to.

Answer:

[tex](f+g)(x)=|x|+3[/tex]  required function is greater than or equal to 3.

Step-by-step explanation:

Given : Two functions [tex]f(x)=|x|+9[/tex] and [tex]g(x)=-6[/tex]

To find : Which describe the value of [tex](f+g)(x)[/tex]?

Solution :

We have given the functions [tex]f(x)=|x|+9[/tex] and [tex]g(x)=-6[/tex]  

We know, By property  

[tex](f+g)(x)=f(x)+g(x)[/tex]  

Substituting the values,

[tex](f+g)(x)=|x|+9+(-6)[/tex]              

[tex](f+g)(x)=|x|+9-6[/tex]        

[tex](f+g)(x)=|x|+3[/tex]  

If we put any value of x in to this function,

We get a value that is greater than or equal to 3.

Refer the attached figure below.

Ver imagen tardymanchester