Respuesta :

[tex]f(x)=5x+12\\\\ y=5x+12\\ 5x=y-12\\ x=\dfrac{y-12}{5}\\\\ f^{-1}(x)=\dfrac{x-12}{5}[/tex]
For this case we have the following function:
 [tex]f (x) = 5x + 12 [/tex]
 Rewriting the function we have:
 [tex]y = 5x + 12 [/tex]
 From here, we clear the value of x.
 We have then:
 [tex]5x = y-12[/tex]
 [tex]x = \frac{y-12}{5} [/tex]
 Then, we return the change of variables.
 We have then:
 [tex]y = \frac{x-12}{5} [/tex]
 Rewriting, we have that the inverse function is:
 [tex]f(x)^{-1}=\frac{x-12}{5}[/tex]
 Answer:
 
D.x-12/5