Respuesta :

Let y = x^2 - 16
x^2 = y + 16 
x = +/- sqrt ( y + 16)

f-1(x) = +/- sqrt (x + 16)   Its the second choice.
For this case we have the following function:
 f (x) = x ^ 2 - 16
 Rewriting the function we have:
 [tex]y = x ^ 2 - 16 [/tex]
 From here, we clear the value of x.
 We have then:
 [tex]x ^ 2 = y + 16 [/tex]
 [tex]x = +/- \sqrt{y+16} [/tex]
 Then, we return the change of variables.
 We have then:
 [tex]y = +/- \sqrt{x+16} [/tex]
 Rewriting, we have the inverse function is:
 [tex]f(x)^{-1}=+/- \sqrt{x+16}[/tex]
 Answer:
 
the inverse function is:
 
[tex]f(x)^{-1}=+/- \sqrt{x+16}[/tex]
 option 2