Respuesta :

The answers are:

1) [tex] x [/tex]

2) [tex] x [/tex]

3) [tex] \frac{ln(x+4)}{2} [/tex]

The explanation for this answer is shown below.

1. To solve this problem you must apply the following proccedure:

2. You have the function [tex] f(x)=e^{2x}-4\\ y=e^{2x}-4 [/tex]

3. You must switch[tex] x [/tex] and [tex] y [/tex] and then solve for[tex] x [/tex]:

[tex] x=e^{2y}-4\\ x+4=e^{2x}\\ ln(x+4)=2y\\ y=\frac{ln(x+4)}{2} [/tex]

4. Finally, you obtain:

[tex] f^{-1}(x)=\frac{ln(x+4)}{2}
[/tex]