Respuesta :

The answer is 6 I just took the test

Answer:

Focus of parabola(c) = (0,10) and (0,-10).

The given equation of hyperbola is

  [tex]\frac{y^2}{8^2}-\frac{x^2}{a^2}=1[/tex]

b=8

If the equation of Hyperbola is,

  [tex]\frac{y^2}{b^2}-\frac{x^2}{a^2}=1[/tex]

then, [tex]b^2=a^2(e^2-1)[/tex]

                                          -------------------------(1)

Where , e is the eccentricity of Hyperbola.

c=a e

10= a e

[tex]e=\frac{10}{a}[/tex]

Putting the value of e, in equation (1)

[tex]8^2=a^2[\frac{10}{a}]^2-1]\\\\ 64=a^2 \times \frac{100}{a^2}-a^2\\\\ a^2=100-64\\\\ a^2=36\\\\ a=\pm 6[/tex]

So, the equation of Hyperbola will be

[tex]\frac{y^2}{8^2}-\frac{6^2}{a^2}=1[/tex]

Blank Space = 6

Ver imagen Аноним