Respuesta :

[tex] \frac{1}{2} = e^{-0.00085t} \\ \\ ln(\frac{1}{2}) = ln(e^{-0.00085t}) \\ \\ ln(\frac{1}{2})= - 0.00085t \\ \\ t = \frac{ln(\frac{1}{2})}{-0.00085} = 815.47[/tex]
ANSWER
To three decimal places,
t ≈ 815.467 

EXPLANATION

   [tex]\begin{aligned} \dfrac{1}{2} &= 1 \cdot e^{-.00085\cdot t} \\ \dfrac{1}{2} &= e^{-.00085\cdot t} \end{aligned}[/tex]

We can use the definition of logarithm to convert this equation into exponential form. 

   [tex]e^a = b \iff \log_e(b) = a \iff \ln(b) = a[/tex]

therefore,

   [tex]\begin{aligned} \dfrac{1}{2} &= e^{-.00085\cdot t} \\ \ln\left( \tfrac{1}{2} \right) &= -.00085\cdot t \\ t &= \frac{\ln\left( \tfrac{1}{2} \right)}{-.00085} \\ t &\approx 815.467 \end{aligned}[/tex]