The hypotenuse of a right triangle is 52 in. One leg of the triangle is 8 in. More than twice the lenght of the other. What is the perimeter of the triangle?

Respuesta :

DeanR

Call the short leg a.  The Pythagorean Theorem says:

[tex]a^2 + (8 + 2 a)^2 = 52^2[/tex]

[tex]a^2 + 8^2 + 32 a + 4a^2 = 52^2[/tex]

[tex]5a^2 + 32 a + 8^2-52^2 = 0[/tex]

[tex]5a^2 + 32 a + (8-52)(8+52) = 0[/tex]

[tex]5a^2 + 32 a - (44)(60) = 0[/tex]

[tex](5a + 132)(a - 20) = 0[/tex]

Only the positive root [tex]a=20[/tex] is relevant here.

The other side is [tex]2a+8=48[/tex]

The perimeter is [tex]20 + 48 + 52 = 120[/tex] inches