Respuesta :

This is 
average rate of change =  [ 4(5)^3 - 4(5)^1 ] / (3 - 1)

 =  480 / 2

= 240   Answer

Answer: 240

Step-by-step explanation:

The average rate of a function f(x) is interval [a,b] is given by :-

[tex]R=\dfrac{f(b)-f(a)}{b-a}[/tex]

Now, the given function : [tex]F(x)=4(5)^x[/tex]

Interval : [1,3]

Now, the average rate of change over the interval [1, 3]  is given by :-

[tex]R=\dfrac{F(3)-F(1)}{3-1}\\\\=\dfrac{4(5)^3-4(5)^1}{2}\\\\=\dfrac{4(5^3-5)}{2}\\\\=\dfrac{4(125-5)}{2}=240[/tex]

Hence, the average rate of the change of the given function over the interval [1, 3] = 240