Perimeter = 36 cm

Heron’s formula: Area = 

What is the area of an equilateral triangle that has a perimeter of 36 centimeters? Round to the nearest square centimeter.

15 square centimeters

62 square centimeters

72 square centimeters

705 square centimeters

Respuesta :

each side = 36/3 = 12 cm

semiperimeter = 36/2 = 18

[tex]Area = \sqrt{18(18-12)(18-12)(18-12)}= \sqrt{18 \cdot6\cdot6\cdot6}= \sqrt{3888} \approx 62[/tex]

Answer: 62 square centimeters

Answer:

The answer is 62 square centimeters

Step-by-step explanation:

Given perimeter is = 36 cm

So, each side will be = [tex]\frac{36}{3}=12[/tex] cm

Side according to formula is = [tex]\frac{12+12+12}{2}=18[/tex] cm

Now area is given as :

[tex]A=\sqrt{s(s-a)(s-b)(s-c)}[/tex] here a,b and c are sides.

=>[tex]A=\sqrt{18(18-12)(18-12)(18-12)}[/tex]

=>[tex]A=\sqrt{18\times6\times6\times6}[/tex]

=>[tex]A=\sqrt{3888}[/tex]

A= 62.35 ≈ 62 square cm

Therefore, the answer is option B : 62 square cm.