Respuesta :
third side = 16 - (7 + 6) = 3 m
semiperimeter = 16/2 = 8 m
[tex]Area = \sqrt{8(8-7)(8-6)(8-3)}= \sqrt{8 \cdot1\cdot2\cdot5}= \sqrt{80} \approx 9 \ m^2[/tex]
Answer: 9 square meters
semiperimeter = 16/2 = 8 m
[tex]Area = \sqrt{8(8-7)(8-6)(8-3)}= \sqrt{8 \cdot1\cdot2\cdot5}= \sqrt{80} \approx 9 \ m^2[/tex]
Answer: 9 square meters
Answer:
9 square meters
Step-by-step explanation:
Heron's formula first tells us how to find the semi-perimeter, S, given sides A, B and C:
[tex]S=\frac{A+B+C}{2}[/tex]
Next we are told how to find the area:
[tex]\text{Area}=\sqrt{S(S-A)(S-B)(S-C)}[/tex]
We know that the perimeter, or distance around all three sides, is 16. Letting x represent the unknown side, this gives us
16 = 7+6+x
16 = 13+x
Subtracting 13 from each side, we have
16-13 = 13+x-13
3 = x
Next we find the semi-perimeter:
[tex]S=\frac{7+6+3}{2}=\frac{16}{2}=8[/tex]
Lastly we use these to find the area:
[tex]\text{Area}=\sqrt{8(8-7)(8-6)(8-3)}=\sqrt{8(1)(2)(5)}\\\\=\sqrt{80}=8.94\approx 9[/tex]