Respuesta :
[tex]z = \log y[/tex]
[tex]y = 10^ z[/tex]
~~~~~~~~~~~~~~~~~~
[tex]z = \ln y[/tex]
[tex]y = e^ z[/tex]
~~~~~~~~~~~~~~~~~~~~~
The real question:
[tex]\log y= 4(1/x) - 14[/tex]
Assuming that's a base 10 log, we do 10 to both sides:
[tex]10^{\log y}= 10^{4/x - 14}[/tex]
[tex]y = 10^{4/x - 14}[/tex]
We might keep going.
[tex]y = \dfrac{ \sqrt[x]{10000}}{10^{14}}[/tex]
[tex]y = 10^ z[/tex]
~~~~~~~~~~~~~~~~~~
[tex]z = \ln y[/tex]
[tex]y = e^ z[/tex]
~~~~~~~~~~~~~~~~~~~~~
The real question:
[tex]\log y= 4(1/x) - 14[/tex]
Assuming that's a base 10 log, we do 10 to both sides:
[tex]10^{\log y}= 10^{4/x - 14}[/tex]
[tex]y = 10^{4/x - 14}[/tex]
We might keep going.
[tex]y = \dfrac{ \sqrt[x]{10000}}{10^{14}}[/tex]
lg y = 4*(1/x) - 14
lg y = 4/x - 14
lg y = log₁₀y
⇒ y = 10^(4/x-14) ( ^ means to the power )
lg y = 4/x - 14
lg y = log₁₀y
⇒ y = 10^(4/x-14) ( ^ means to the power )