Respuesta :

If QR = LN, that is, x + y = 6;
And OP = VW, that is, 3x - y = 10;

You can solve this system of equations. I will solve by the substitution method.

{x + y = 6 -> y = 6 - x
{3x - y = 10

{3x - y = 10
-> 3x - (6 - x) = 10
-> 3x - 6 + x = 10
-> 4x = 10 + 6
-> 4x = 16
-> x = 16/4
-> x = 4

{y = 6 - x
-> y = 6 - 4
-> y = 2

Answer: X = 4; Y = 2.

Answer:

[tex]x=4[/tex]

[tex]y=2[/tex]

Step-by-step explanation:

We have been given an image of two congruent circles. We are asked to find the value of x and y for our given circles.

Since [tex]\overline{QR}\cong\overline{LN}[/tex], so [tex]\overline{QR}=\overline{LN}[/tex].

[tex]x+y=6...(1)[/tex]

Since [tex]\overline{OP}\cong\overline{VW}[/tex], so [tex]\overline{OP}=\overline{VW}[/tex].

[tex]3x-y=10...(2)[/tex]

From equation (1), we will get:

[tex]x=6-y[/tex]

Upon substituting this value in equation (2), we will get:

[tex]3(6-y)-y=10[/tex]

Upon using distributive property, we will get:

[tex]18-3y-y=10[/tex]

[tex]18-4y=10[/tex]

[tex]18-18-4y=10-18[/tex]

[tex]-4y=-8[/tex]

[tex]\frac{-4y}{-4}=\frac{-8}{-4}[/tex]

[tex]y=2[/tex]

Therefore, the value of y is 2.

Now, we will substitute [tex]y=2[/tex] in equation (1) as:

[tex]x+2=6[/tex]

[tex]x+2-2=6-2[/tex]

[tex]x=4[/tex]

Therefore, the value of x is 4.