If [tex] \frac{4xy^3+8x^2y^5}{2xy^2} [/tex] is completely simplified to 2xayb + 4xcyd, where a, b, c, and d represent integer exponents, what is the value of a? _______

Respuesta :

Hi there!

[tex]\dfrac{4xy^{3} + 8x^{2}y^{5}}{2xy^2}[/tex]

Simplifying th' expression :-

⇒ [tex]\dfrac {4xy^{3} (1 + 2xy^2)}{2xy^2}[/tex]

⇒ [tex]2y (1 + 2xy^2)[/tex] ⇒[tex]2y + 4xy^3[/tex]

On Equating this from with simplified form provided in th' question :-

• [tex]a[/tex] = 1
• [tex]b[/tex] = 0
• [tex]c[/tex]= 1
• [tex]d[/tex]= 3

Hence,
According to th' question value of a = x⁰ = 1

~ Hope it helps