Respuesta :

g(x)/f(x) = (x^2)/(3x + 5)

Since we have a denominator, it cannot equal zero. Thus

3x + 5 ≠ 0

      3x ≠ -5

        x ≠ -5/3

Therefore the required domain is  x  can be an real number except  -5/3


Answer:

The domain of the function is [tex]D=[x|x\neq-\frac{5}{3}][/tex]

Step-by-step explanation:  

Given : [tex]f(x)=3x+5[/tex] and [tex]g(x)=x^2[/tex]

To find : [tex]\frac{g(x)}{f(x)}[/tex] and state it's domain?

Solution :

The required function is [tex]\frac{x^2}{3x+5}[/tex]

Now, The domain is defined as the set of values of possible value that make function work.

The function to be defined when denominator cannot be zero.

So, [tex]3x+5\neq0[/tex]

i.e. [tex]x\neq -\frac{5}{3}[/tex]

Therefore, The domain of the function is [tex]D=[x|x\neq-\frac{5}{3}][/tex]