Respuesta :
g(x)/f(x) = (x^2)/(3x + 5)
Since we have a denominator, it cannot equal zero. Thus
3x + 5 ≠ 0
3x ≠ -5
x ≠ -5/3
Therefore the required domain is x can be an real number except -5/3
Answer:
The domain of the function is [tex]D=[x|x\neq-\frac{5}{3}][/tex]
Step-by-step explanation:
Given : [tex]f(x)=3x+5[/tex] and [tex]g(x)=x^2[/tex]
To find : [tex]\frac{g(x)}{f(x)}[/tex] and state it's domain?
Solution :
The required function is [tex]\frac{x^2}{3x+5}[/tex]
Now, The domain is defined as the set of values of possible value that make function work.
The function to be defined when denominator cannot be zero.
So, [tex]3x+5\neq0[/tex]
i.e. [tex]x\neq -\frac{5}{3}[/tex]
Therefore, The domain of the function is [tex]D=[x|x\neq-\frac{5}{3}][/tex]