Respuesta :
For odd function f(-x)= -f(x)
1) f(-x)= sin(-x) = -sin(x)=-f(x) sin is odd function
2) f(-x) = sin(-2x) = -sin 2x=-f(x)
3) f(-x)= (-x)³+1 = -x³ +1 (not an odd function)
To be an odd function, it should be like this:
if a function is (x³+1), to be odd f(-x) should be -(x³+1)=-x³-1
4) f(x)= x/(x²+1)
f(-x) = (-x)/((-x)²+1)= -x/(x²+1)=-f(x)
So, f(-x) gives [tex]- \frac{x}{x^{2}+1} [/tex],
that means that f(x)= x/(x²+1) is an odd function.
5)f(x) = ∛(2x)
f(-x) = ∛(2*(-x)=∛(2x*(-1)) = ∛(2x)*∛(-1)=- ∛(2x)= -f(x)
1) f(-x)= sin(-x) = -sin(x)=-f(x) sin is odd function
2) f(-x) = sin(-2x) = -sin 2x=-f(x)
3) f(-x)= (-x)³+1 = -x³ +1 (not an odd function)
To be an odd function, it should be like this:
if a function is (x³+1), to be odd f(-x) should be -(x³+1)=-x³-1
4) f(x)= x/(x²+1)
f(-x) = (-x)/((-x)²+1)= -x/(x²+1)=-f(x)
So, f(-x) gives [tex]- \frac{x}{x^{2}+1} [/tex],
that means that f(x)= x/(x²+1) is an odd function.
5)f(x) = ∛(2x)
f(-x) = ∛(2*(-x)=∛(2x*(-1)) = ∛(2x)*∛(-1)=- ∛(2x)= -f(x)
Answer: f(x) =x³ + 1 is not an odd function
Step-by-step explanation:
We are asked about odd functions
If f(x) be a function and f(-x) =-f(x)
then f(x) is an odd function
1) f(x) = sinx
Here f(-x) = sin(-x)
=-sinx sin(-x) = -sinx
Therefore it is an odd function
2) f(x) = sin2x
f(-x) = sin 2(-x)
= sin (-2x)
=-sin2x = -f(x)
Therefore it is an odd function
3) f(x) = x³ +1
f(-x) = (-x)³ + 1
= -x³+1
For odd function it should be -(x³+1)
Hence it is not an odd function
4) f(x) = [tex]\frac{x}{x^{2+1} }[/tex]
f(-x) = [tex]\frac{-x}{(-x)^{2} +1}[/tex]
=[tex]\frac{-x}{x^{2}+1 }[/tex]
= -f(x)
Therefore it is an odd function
5) f(x) = ∛(2x)
f(-x) =∛(-2x)
= - ∛(2x)
=- f(x)
Hence it is an odd function
∴ 3) f(x) = x³+1 is not an odd function