The​ equation, with a restriction on​ x, is the terminal side of an angle theta in standard position. y= -2x Quadrant IV.

Give the exact values of the six trigonometric functions of theta. Select the correct choice below and fill in any answer boxes within your choice.

Respuesta :

In Q4, the terminal ray of our reference angle is the hypotenuse of the right triangle created by connecting the end of the terminal ray to the positive x-axis.  Theta is the angle between these 2.  In the equation, in the simplest form, if we sub in a 1 for x, then y = -2.  That means the distance along the x axis (the base of the right triangle) is 1, and the height of the triangle is -2.  We need now to find the measure of the hypotenuse using Pythagorean's Theorem.  [tex]c^2=1^2+(-2)^2[/tex]  and  [tex]c^2=5[/tex]  so  [tex]c= \sqrt{5} [/tex].  The sin of theta is the ratio of the side opposite over the hypotenuse, so [tex]sin \theta =- \frac{2}{ \sqrt{5} } [/tex],  and [tex]csc \theta =- \frac{ \sqrt{5} }{2} [/tex].  [tex]cos \theta= \frac{1}{ \sqrt{5} } [/tex]  and [tex]sec \theta = \frac{ \sqrt{5} }{1} [/tex].  [tex]tan \theta = -\frac{2}{1} [/tex]  so  [tex]cot \theta =- \frac{1}{2} [/tex].  There you go!

Answer:

yes

Step-by-step explanation:

sin(θ) =

✔ -15/17

cos(θ) =

✔ 8/17

tan(θ) =

✔ -15/8

csc(θ) =

✔ -17/15

sec(θ) =

✔ 17/8

cot(θ) =

✔ -8/15