Respuesta :

The generic equation of the line is given by:
 [tex]y = mx + b [/tex]
 Equivalently:
 [tex]y-yo = m (x-xo) [/tex]
 Where,
 m: slope of the line
 b: cutting point with the y axis
 (xo, yo): ordered pair that belongs to the line
 
 For line A:
 
The slope is given by:
 [tex]m = \frac{1-3}{4-1} [/tex]
 [tex]m = \frac{-2}{3} [/tex]
 The cut point with the y axis is:
 [tex]b = \frac{11}{3} [/tex]
 Substituting values we have:
 [tex]y = -\frac{2}{3}x + \frac{11}{3} [/tex]

 For line B:
 The slope is given by:
 [tex]m=\frac{1-(-5)}{4-0}[/tex]
 [tex]m=\frac{1+5}{4}[/tex]
 [tex]m=\frac{6}{4}[/tex]
 [tex]m=\frac{3}{2}[/tex]
 Then, the equation of the line is:
 [tex]y-1= \frac{3}{2}(x-4) [/tex]

 Answer:
 
Option A