Respuesta :

[tex]\bf ~~~~~~~~~~~~\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} \qquad \qquad \cfrac{1}{a^n}\implies a^{-n} \qquad \qquad a^n\implies \cfrac{1}{a^{-n}} \\\\ -------------------------------\\\\ (m\times n)^{-1}\implies \cfrac{1}{(m\times n)^1}\implies \cfrac{1}{mn}[/tex]
We can solve this by using the exponent rule [tex]a^{-n} = \frac{1}{a^{n} } [/tex]. In this case, a is mn and -n is -1. That means that the simplified version of this is [tex] \frac{1}{(mn)^{1} } [/tex] = [tex] \frac{1}{(mn)} [/tex] (anything to the power of one is itself).