Respuesta :

Answer

The length of QV is 31 units

Explanation

Notice that triangle STR and triangle TQR are congruent by Side-Angle-Side, so ST = TQ

We also know that TQ = 26, and we can infer from our diagram that [tex]ST = 3x+2[/tex], so let's replace the values:

ST = TQ

[tex]3x+2=26[/tex]

[tex]3x=24[/tex]

[tex]x=\frac{24}{3}[/tex]

[tex]x=8[/tex]

Also, notice that triangle SVR is congruent to Triangle VQR by Side-Angle-Side as well, so QV = SV

We know that [tex]SV=4x-1[/tex], so let's replace the value:

[tex]QV=4x-1[/tex]

Since we know that [tex]x=8[/tex], we can replace the value to find QV:

[tex]QV=4x-1[/tex]

[tex]QV=4(8)-1[/tex]

[tex]QV=32-1[/tex]

[tex]QV=31[/tex]

Answer:

31

Step-by-step explanation: