[tex]\displaystyle
f(x)=\iint f''(x)\, dx\, dx\\\\
f'(x)=\int (-2+30x-12x^2)\, dx\\
f'(x)=-2x+15x^2-4x^3+C\\\\
14=-2\cdot0+15\cdot0^2-4\cdot0^3+C\\
C=14\\\\
f'(x)=-2x+15x^2-4x^3+14\\\\
f(x)=\int (-2x+15x^2-4x^3+14)\, dx\\
f(x)=-x^2+5x^3-x^4+14x+C\\\\
9=-0^2+5\cdot0^3-0^4+14\cdot4+C\\
C=9\\\\
\boxed{f(x)=-x^2+5x^3-x^4+14x+9}[/tex]