Respuesta :
(2^1/2 x 2^3/4)^2
= (2^2/4 x 2^3/4)^2
= (2^5/4)^2
= 2^10/4
= 2^5/2
= (2^2/4 x 2^3/4)^2
= (2^5/4)^2
= 2^10/4
= 2^5/2
Answer:
Given the expression: [tex](2^{\frac{1}{2}} \times 2^{\frac{3}{4}})^2[/tex]
Using:
- [tex]a^n \times a^m = a^{n+m}[/tex]
- [tex](a^n)^m = a^{nm}[/tex]
- [tex]a^{\frac{m}{n}} = \sqrt[n]{a^m}[/tex]
[tex](2^{\frac{1}{2}+\frac{3}{4}} )^2[/tex]
Simplify:
[tex](2^{\frac{5}{4}})^2[/tex]
[tex]2^{\frac{5 \times 2}{4}} =2^{ \frac{5}{2}}[/tex] = [tex]\sqrt[2]{2^5} = \sqrt[2]{32} = 4\sqrt{2}[/tex]
Therefore, the expression which is equivalent to [tex](2^{\frac{1}{2}} \times 2^{\frac{3}{4}})^2[/tex] is: [tex]4\sqrt{2}[/tex] or [tex]2^{\frac{5}{2} }[/tex]