Respuesta :
We can solve this problem by using the laws of exponents. The laws of exponents state:
[tex] \frac{x^{n} }{x^{y} } [/tex] = [tex] x^{n-y} [/tex]
We can use this law in our situation. The answer here, using the laws of exponents, is [tex]5^{6-5} [/tex] or 5.
[tex] \frac{x^{n} }{x^{y} } [/tex] = [tex] x^{n-y} [/tex]
We can use this law in our situation. The answer here, using the laws of exponents, is [tex]5^{6-5} [/tex] or 5.
to the risk of sounding redundant.
[tex]\bf a^{-n} \implies \cfrac{1}{a^n} \qquad \qquad \cfrac{1}{a^n}\implies a^{-n} \qquad \qquad a^n\implies \cfrac{1}{a^{-n}} \\\\ -------------------------------\\\\ \cfrac{5^6}{5^5}\implies 5^6\cdot 5^{-5}\implies 5^{6-5}\implies 5^1\implies 5[/tex]
[tex]\bf a^{-n} \implies \cfrac{1}{a^n} \qquad \qquad \cfrac{1}{a^n}\implies a^{-n} \qquad \qquad a^n\implies \cfrac{1}{a^{-n}} \\\\ -------------------------------\\\\ \cfrac{5^6}{5^5}\implies 5^6\cdot 5^{-5}\implies 5^{6-5}\implies 5^1\implies 5[/tex]