Respuesta :
The formula of a sum of the geometric sequence:
[tex]S_n=\dfrac{a_1(1-r^n)}{1-r}[/tex]
We have:
[tex]a_1=-3(4)^{1-1}=-3(4)^0=-3\\\\r=4\\\\n=5[/tex]
Substitute:
[tex]S_5=\dfrac{-3(1-4^5)}{1-4}=\dfrac{-3(1-1024)}{-3}=\dfrac{-3(-1023)}{-3}=-1,023[/tex]
Answer: A) -1,023
Answer:
Option A. -1023
Step-by-step explanation:
If we form the finite geometric sequence by using expression [tex]-3.4^{(n-1)}[/tex] by putting n = 1, 2, 3, 4, 5.
Sequence will be = -3, -12, -48, -192, -768
Now we can either do the total of all numbers of the sequence or use the formula to calculate the sum.
Total of terms = (-3) + (-12) + (-48) + (-192) + (-768) = -1023
Or by using formula
Sum = [tex]a.\frac{(1-r^{n})}{1-r}[/tex]
Here a = -3
r = (-12)/(-3) = 4
n = 5
Therefore sum of the sequence = [tex](-3).\frac{(1-4^{5}) }{1-4}= \frac{(-3).(-1023)}{(-3)}=-1023[/tex]
Option A is the answer.