Respuesta :

Here we have to find the probability [tex] P(-2.25<z<1.25) [/tex]. Now express the probability in terms of standard normal cumulative distribution function. That is [tex] \Phi(x)=P(z<x) [/tex].

[tex] P(-2.25<z<1.25)=\Phi(1.25)-\Phi(-2.25) [/tex]

Now you can look up the probability from the standard normal tables. Its value is

[tex] P(-2.25<z<1.25)=\Phi(1.25)-\Phi(-2.25)\\
P(-2.25<z<1.25)=0.8821 [/tex]

Here we have to find the probability  P(-2.25<z<1.25) . Now express the probability in terms of standard normal cumulative distribution function. That is  \Phi(x)=P(z<x) .

P(-2.25<z<1.25)=\Phi(1.25)-\Phi(-2.25)

Now you can look up the probability from the standard normal tables. Its value is

P(-2.25<z<1.25)=\Phi(1.25)-\Phi(-2.25)\\ P(-2.25<z<1.25)=0.8821

Read more on Brainly.com - https://brainly.com/question/10724834#readmore