Respuesta :
Here we have to find the probability [tex] P(-2.25<z<1.25) [/tex]. Now express the probability in terms of standard normal cumulative distribution function. That is [tex] \Phi(x)=P(z<x) [/tex].
[tex] P(-2.25<z<1.25)=\Phi(1.25)-\Phi(-2.25) [/tex]
Now you can look up the probability from the standard normal tables. Its value is
[tex] P(-2.25<z<1.25)=\Phi(1.25)-\Phi(-2.25)\\
P(-2.25<z<1.25)=0.8821 [/tex]
Here we have to find the probability P(-2.25<z<1.25) . Now express the probability in terms of standard normal cumulative distribution function. That is \Phi(x)=P(z<x) .
P(-2.25<z<1.25)=\Phi(1.25)-\Phi(-2.25)
Now you can look up the probability from the standard normal tables. Its value is
P(-2.25<z<1.25)=\Phi(1.25)-\Phi(-2.25)\\ P(-2.25<z<1.25)=0.8821
Read more on Brainly.com - https://brainly.com/question/10724834#readmore