Respuesta :

we are given

equation of curve is

[tex] x=-2y^{\frac{3}{2}} [/tex]

Bound is

from y=0 to y=9

now, we can use arc length formula

[tex] L=\int\limits^a_b {\sqrt{1+(\frac{dx}{dy})^2}} \, dy [/tex]

Firstly , we will find dx/dy

that is derivative

[tex] x=-2y^{\frac{3}{2}} [/tex]

[tex] \frac{dx}{dy} =-2*\frac{3}{2} *y^{\frac{1}{2}} [/tex]

now, we can simplify it

[tex] \frac{dx}{dy} =-3y^{\frac{1}{2}} [/tex]

Arc length:

now, we can plug it in arc length formula

and we get

[tex] L=\int\limits^0_9 {\sqrt{1+(-3y^{\frac{1}{2}})^2}} \, dy [/tex]

now, we can solve it

Firstly , we will solve integral

[tex] \int \sqrt{1+\left(-3\sqrt{y}\right)^2}dy [/tex]

[tex] =\int \sqrt{9y+1}dy [/tex]

[tex] =\frac{2}{27}\left(9y+1\right)^{\frac{3}{2}} [/tex]

now, we can plug bounds

and we get

[tex] =\frac{164\sqrt{82}}{27}-\frac{2}{27} [/tex]

[tex] L=54.92901 [/tex]...........Answer