2sin(4x)+6=5

Select one or more expressions that together represent all solutions to the equation. Your answer should be in degrees.
Assume
n
nn is any integer.

Solve sinusoidal equations

Respuesta :

frika

Let's solve the sine equation.

1. Express sine function in the left side of equation:

[tex] 2\sin (4x)+6=5,\\ 2\sin (4x)=5-6,\\ 2\sin (4x)=-1,\\ \\ \sin (4x)=-\dfrac{1}{2} [/tex].

2. Use the genereal solution to get the solution of your equation:

[tex] 4x=(-1)^n\arcsin \left(-\dfrac{1}{2}\right) +2\pi n [/tex], where [tex] n\in Z [/tex].

3. Find [tex] \arcsin \left(-\dfrac{1}{2}\right) [/tex]:

[tex] \arcsin \left(-\dfrac{1}{2}\right)=-\dfrac{\pi}{3} [/tex].

4. Substitute part 3 into part 2 and express x:

[tex] 4x=(-1)^n \left(-\dfrac{\pi}{3}\right) +2\pi n [/tex], where [tex] n\in Z, [/tex]

[tex]x=(-1)^{n+1}\cdot \dfrac{\pi}{12}+\dfrac{\pi n}{2} [/tex], where [tex] n\in Z[/tex].

5. Solutions of your equation are:

[tex]x=(-1)^{n+1}\cdot \dfrac{\pi}{12}+\dfrac{\pi n}{2} [/tex], where [tex] n\in Z [/tex].