Answer: The osmotic pressure of aspirin is 0.0190 atm
Explanation:
To calculate the molarity of solution, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Mass of solute}}{\text{Molar mass of solute}\times \text{Volume of solution (in L)}}[/tex]
We are given:
Mass of solute (aspirin) = 35.0 mg = 0.035 g (conversion factor: 1 g = 1000 mg)
Molar mass of aspirin = 180.16 g/mol
Volume of solution = 0.250 L
Putting values in above equation, we get:
[tex]\text{Molarity of solution}=\frac{0.035g}{180.16g/mol\times 0.250L}\\\\\text{Molarity of solution}=7.77\times 10^{-4}M[/tex]
To calculate the osmotic pressure, we use the equation:
[tex]\pi=iMRT[/tex]
where,
[tex]\pi[/tex] = osmotic pressure of the solution
i = Van't hoff factor = 1 (for non-electrolytes)
M = molarity of aspirin = [tex]7.77\times 10^{-4}M[/tex]
R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]
T = temperature of the solution = [tex]25^oC=[273+25]=298K[/tex]
Putting values in above equation, we get:
[tex]\pi=1\times 7.77\times 10^{-4}\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 298K\\\\\pi=0.0190atm[/tex]
Hence, the osmotic pressure of aspirin is 0.0190 atm