The osmotic pressure of a solution formed by dissolving 35.0 mg of aspirin (c9h8o4) in 0.250 l of water at 25°c is __________ atm.

Respuesta :

Answer: The osmotic pressure of aspirin is 0.0190 atm

Explanation:

To calculate the molarity of solution, we use the equation:

[tex]\text{Molarity of the solution}=\frac{\text{Mass of solute}}{\text{Molar mass of solute}\times \text{Volume of solution (in L)}}[/tex]

We are given:

Mass of solute (aspirin) = 35.0 mg = 0.035 g    (conversion factor: 1 g = 1000 mg)

Molar mass of aspirin = 180.16 g/mol

Volume of solution = 0.250 L

Putting values in above equation, we get:

[tex]\text{Molarity of solution}=\frac{0.035g}{180.16g/mol\times 0.250L}\\\\\text{Molarity of solution}=7.77\times 10^{-4}M[/tex]

To calculate the osmotic pressure, we use the equation:

[tex]\pi=iMRT[/tex]

where,

[tex]\pi[/tex] = osmotic pressure of the solution

i = Van't hoff factor = 1 (for non-electrolytes)

M = molarity of aspirin = [tex]7.77\times 10^{-4}M[/tex]

R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]

T = temperature of the solution = [tex]25^oC=[273+25]=298K[/tex]

Putting values in above equation, we get:

[tex]\pi=1\times 7.77\times 10^{-4}\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 298K\\\\\pi=0.0190atm[/tex]

Hence, the osmotic pressure of aspirin is 0.0190 atm