–/1 points scalc8 16.7.005.my notes question part points submissions used evaluate the surface integral. s (x + y + z) ds, s is the parallelogram with parametric equations x = u + v, y = u − v, z = 1 + 2u + v, 0 ≤ u ≤ 4, 0 ≤ v ≤ 1.

Respuesta :

You're conveniently given the parameterization of the surface [tex]\mathcal S[/tex],

[tex]\mathbf s(u,v)=\langle u+v,u-v,1+2u+v\rangle[/tex]

where [tex]0\le u\le4[/tex] and [tex]0\le v\le1[/tex], so all we need to set up and compute the integral is to compute the surface element, [tex]\mathrm dS[/tex]:

[tex]\mathrm dS=\|\mathbf s_u\times\mathbf s_v\|\,\mathrm du\,\mathrm dv[/tex]

[tex]\mathrm dS=\sqrt{14}\,\mathrm du\,\mathrm dv[/tex]

So the surface integral is

[tex]\displaystyle\iint_{\mathcal S}x+y+z\,\mathrm dS=\sqrt{14}\int_{v=0}^{v=1}\int_{u=0}^{u=4}(u+v)+(u-v)+(1+2u+v)\,\mathrm du\,\mathrm dv[/tex]

[tex]=\displaystyle\sqrt{14}\int_{v=0}^{v=1}\int_{u=0}^{u=4}1+4u+v\,\mathrm du\,\mathrm dv=38\sqrt{14}[/tex]