A giant wheel has a radius of 14 ft. To the nearest tenth of a foot, what distance does the giant wheel cover when it rotates through an angle of 96∘?

Respuesta :

General Idea:

Length of a sector is given by the below equation:

[tex] Length \; \; of\;\; Sector \;\; of\; Circle = \frac{\theta }{360} \cdot 2 \cdot \pi \cdot r\\ where \; \; \theta \;is\; in \;degrees \; and \; r\; is\; radius [/tex]

Applying the concept:

Given [tex] \theta = 96^{\circ} [/tex] and [tex] r=14ft [/tex]

Substituting the above details in the formula, we get...

[tex] Length\; \; of\;\;sector\;\;of\;\;circle=\frac{\96}{360} \cdot 2 \cdot \pi \cdot 14\approx 23.5\; feet [/tex]\

Conclusion:

The Distance that the giant wheel cover when it rotates through an angle of 96∘ is 23.5 feet.